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Abstract—The Science Activity Planner (SAP), currently un-
der development by our group at the Jet Propulsion Labora-
tory, will be the primary tool used for science data assess-
ment and science activity planning during the Mars Explo-
ration Rover (MER) mission. As part of its data visualiza-
tion capability, SAP interactively displays 3D terrain sur-
face data corresponding to the MER image data products.
These datasets can be very large, e.g. on the order of tens
of millions of vertices for a panorama, so it is a challenge
to load and display them at interactive speeds on a worksta-
tion. We describe the software techniques we are implement-
ing to address this challenge and present recent test results.
A fundamental development is the new Visible Scalable Ter-
rain (ViSTa) format, a flexible and precise interchange format
for terrain data. Other developments include multi-threaded
asynchronous event-driven data loading, practical heuristics
for geometry LOD and texture resolution selection, multi-
level garbage-collector friendly data caching, and an opti-
mized ray intersection system.
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1. INTRODUCTION

The Mars Exploration Rover mission (MER), [7], is sched-
uled to land two rovers on the surface of Mars in early 2004,
extending the technology demonstrated in the 1997 Mars
Pathfinder mission into a full “robotic field geology” sys-
tem. The MER vehicles, while based on a similar 6-wheel
rocker-bogey mobility platform, are larger and much more
capable than the 1997 Sojourner rover. They will carry a
compliment of scientific instruments called the Athena Sci-
ence Payload ([6]) which includes three spectrometers, a
multi-wavelength mast-mounted imager called the Pancam, a
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manipulator-mounted microscopic imager, plus several other
instruments [8]. Additional high-resolution cameras will also
be included for use in activity planning and engineering anal-
ysis.

With the exception of the microscopic imager, all MER cam-
eras are actually stereo pairs from which both 2D and 3D
datasets are acquired. This paper is focused on the software
techniques we are developing to interactively visualize the 3D
data, which is especially challenging because the datasets can
be quite large.

The MER mission will be operated from JPL for its duration
by a team of scientists selected from a number of institutions
and by JPL engineers. Each Martian day, or “sol”, that the
rovers are active on the Martian surface, the scientists will
analyze newly acquired downlink data from the MER instru-
ments and collaborate to produce science activity plans for
the subsequent sol. These science plans will then be used as
input to develop the sequences of commands which are ulti-
mately uplinked to the rovers for execution.

We are developing a software system called the Science Ac-
tivity Planner (SAP), shown in Figure 1, which the mission
scientists will use to analyze the 2D and 3D data from the
rovers’ instruments and to develop science activity plans.

The data visualization components of SAP have been en-
tirely revamped relative to the related functionality used
previously [2]. Many features have been added, but the bulk
of the work has been to support high-speed loading, naviga-
tion, and manipulation of the especially large datasets that
the MER instruments are expected to produce. Most MER
cameras have roughly 4 times the resolution of the highest-
resolution cameras that have been used on our research rovers,
which were 640 � 480. Also, larger collections of images
(typically “panoramas” taken by rotating mast-mounted cam-
eras while the rover remains stationary) are expected to be
used during MER than have been used in the past.

The increased quantity of data is especially difficult to deal
with in the 3D visualization component of SAP, since here



Figure 1. The Science Activity Planner (SAP) is the software system the MER mission scientists will use to analyze the 2D
and 3D data from the rovers’ instruments and to develop science activity plans. This figure shows a typical dual-monitor screen
layout for operating SAP. The activity planning interface is on the left . The data visualization interface is on the right, where a
2D view of a dataset is shown above a 3D view of the same dataset. Data shown is from recent field test of the MER-like FIDO
rover [5].

we must manipulate not only all of the 2D data (for texturing)
but also the voluminous 3D spatial data which describes the
structure of the imaged surfaces.

3D Data Acquisition and Processing

To illustrate the role SAP plays in 3D science data visualiza-
tion we review the stages of the 3D data processing pipeline
from acquisition to display in SAP. We present this review
here to provide context for the bulk of our discussion in this
paper, which will be focused on the software techniques we
use for interactive 3D visualization. The basic steps are:

1. acquire a stereo pair of images, called a wedge because
the camera frusta typically intersect the terrain surface near
the rover in a truncated wedge shape
2. pre-process the images to compensate for optical distor-
tion and other effects
3. perform stereo correlation to recover disparity values for
as many pixels as possible
4. use the disparity values and camera calibration informa-
tion to produce an array of points in 3D space called an XYZ
map
5. triangulate the XYZ map to produce a surface mesh, po-
tentially dropping some 3D points and repeating to produce
multiple Levels Of Detail (LOD)
6. transform the mesh vertex coordinates to the desired out-
put frame
7. write the mesh geometry and topology to file
8. assemble the mesh files for all wedges associated with a
single camera activity (usually a panorama) into an indexed
collection
9. for each wedge in the collection, load the mesh file and
one of the corresponding image files (typically the left camera
image is used)
10. interactively render all meshes in the collection simulta-

neously as triangulated surfaces textured by the correspond-
ing images

The end result of this process, shown in Figure 2, is a visual-
ization system in SAP which allows the MER mission scien-
tists to virtually navigate the terrain the rover has imaged.

2. RELATED WORK

Although it is the primary tool to be used by the mission
scientists for scientific data visualization and science activ-
ity planning, SAP is not the only tool that will be used during
MER operations for visualization of 3D instrument data:

� Viz ([4]) is a software package for 3D data visualization
under development at NASA Ames Research Center. Viz
provides some types of detailed data analysis, for example
shadow simulation, that SAP does not currently support. Viz
is currently limited to 3D datasets only, whereas SAP pro-
vides full capabilities to visualize both 2D (Figure 1, upper
right) and 3D (Figure 1, lower right) datasets, and also allows
science activity planning (Figure 1, left).

� An additional JPL-internal tool is also under development
which will be used for engineering activity planning and up-
link sequence validation. This tool will have its own 3D data
visualization independent of SAP and Viz.

Another significant area of related work is the relatively large
body of research in multiresolution data visualization, espe-
cially that which is specific to terrain data rendering. One
well-known and representative system for terrain rendering is
ROAM ([9]), which stands for “Real-time Optimally Adapt-
ing Meshes.” ROAM is an advanced and relatively complex
system which manipulates a triangulated terrain mesh in real
time on a per-triangle basis to maximize framerate while at-
tempting to optimize certain quality-motivated error metrics.
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Figure 2. A major component of SAP is a 3D visualization
system which allows the MER mission scientists to virtually
navigate the terrain the rover has imaged. This figure shows
a “panorama” of terrain “wedges”. Each wedge was acquired
by a rotating mast-mounted camera, shown deployed in this
image (colored cyan in the rover model). Areas in which 3D
data recovery has failed (typically due to failure of stereo cor-
relation) are left as holes in the terrain model through which
the light-blue background is visible. One entire wedge is ab-
sent in the foreground, likely due to an acquisition or process-
ing error. Data shown is from recent field test of the MER-like
FIDO rover [5].

One major issue with ROAM is that, in its usual implementa-
tion, it supports only 2.5D terrains (i.e. elevation maps). As
shown in Figure 3, overhangs (which cannot be represented
by a ground-aligned elevation map) are sometimes critically
important features of terrains visualized in SAP. During ini-
tial design, we also felt that the real time per-triangle com-
putations of ROAM, and of other systems like it, were po-
tentially overkill in SAP. As shown in Figure 2, the datasets
we visualize are naturally segmented by virtue of the fact that
they were acquired in wedges from multiple pairs of stereo
images, each with a relatively narrow field of view. We pre-
dicted that a system based on discrete, fixed levels of detail
for each wedge would be relatively simple to implement and
would still provide adequate performance and quality. This
prediction has proved accurate thus far (c.f. Sections 4 and 5).

3. VISIBLE SCALABLE TERRAIN (VISTA)
FORMAT

As we described in Section 1, the result of the terrain process-
ing pipeline for MER is one or more files containing triangu-
lated terrain surface data. The format of the subset of these
files that are read by SAP was carefully designed, as it has
a large effect on SAP’s data loading performance, and a ma-
jor impact on the network bandwidth and disk space required
for data distribution and storage. In other implementations
an ad-hoc terrain file format was used which was the source
of several major inefficiencies. The larger datasets expected

Figure 3. Overhangs are sometimes critically important fea-
tures of terrains visualized in SAP. This figure shows an ac-
tual situation that occurred during a recent test of the MER-
like FIDO rover [5]. The rover has approached an outcrop-
ping (visible to the right of the rover in this view) which in-
cludes some overhanging geometry. In subsequent operations
we attempted to deploy the rover’s instrument arm onto the
outcropping.

to be produced by MER demanded that we revisit this for-
mat. We evaluated a number of existing formats, as described
below, and eventually decided that the deficiencies of each
warranted the design of a new format.

We have named the new format ViSTa, which stands for “Vis-
ible Scalable Terrain”, because it is specifically adapted to
terrain data acquired from stereo vision hardware, and it also
is designed to support data and performance scalability. We
have endeavored to design ViSTa so that it is re-usable in any
system which visualizes terrain acquired from stereo vision
hardware. In the remainder of this Section we will give only
an overview of ViSTa. The full specification document, [1],
should always be thoroughly consulted when developing soft-
ware that reads or writes ViSTa.

Problems with Existing Formats

Clearly, if a data format had already existed that was well-
documented, available for our use, and which met all of
our needs, then we would have seriously considered using
it rather than develop our own new format. However, as we
surveyed the existing formats, we discovered that each had
one or more major deficiencies with respect to our intended
use in SAP.

We do not claim that our survey was exhaustive. It is merely
what we were capable of performing given our budget and
time constraints. We do believe we have covered nearly all
major geometry formats for which full technical documenta-
tion is readily and publicly available on the internet.
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A number of common terrain data formats are inherently lim-
ited to 2.5D (i.e. elevation map) models. This is reason-
able given their intended uses, which are typically GIS, mil-
itary/commercial simulation, and games. However, as Fig-
ure 3 illustrates, overhangs are sometimes significant and crit-
ically important features in terrain datasets used in SAP. Thus
we must omit from consideration all data formats that are
strictly 2.5D. These include United States Geological Sur-
vey (USGS) Digital Elevation Model (DEM), USGS Digi-
tal Terrain Elevation Data (DTED), USGS National Elevation
Dataset (NED), and Virtual Terrain Project (VTP) Binary Ter-
rain (BT) format.

Of course there also exist many fully three-dimensional ge-
ometry data formats. Mostly these have been developed for
use in CAD, virtual reality, computer art/animation, games,
and mathematical visualization applications. Terrain data can
be represented as a special case in any of these.

A few of the 3D formats do not include provisions for
storing texture mapping1 information. As we describe in
the Visibility section below, this information is important in
SAP because it allows the terrain to be colored by its ac-
tual sensed visual appearance (and other co-registered data),
which greatly enhances the usefulness of the visualization for
scientists. 3D formats which do not support texture mapping
include Autodesk R

�
Data eXchange Format (DXF) and STere-

oLithography (STL).

Many 3D formats do include texture mapping information.
However, of these, most have no provisions for data and/or
performance scalability, which typically involves including
information to construct lower-resolution versions of the full
model. In the Scalability section below, we elaborate on
the scalability we desire for SAP’s terrain data. Formats
which we omit due to lack of scalability support include
LightWave R

�
Scene (LWS), Alias

�
Wavefront R

�
OBJect (OBJ),

Visualization ToolKit (VTK), and 3ds max[TM] (3DS).

Only a few common 3D formats support both texture map-
ping and scalability. Two of these, SGI R

�
Open Inventor[TM]

binary format and SGI R
�

OpenGL Performer[TM] Performer
Binary Format (PFB), are proprietary. The third, Virtual
Reality Modeling Language (VRML), is popular and well-
documented. However, it is an ASCII format, and for large
datasets we felt that this would lead to greatly inflated file
sizes and load times relative to a binary format.

Design Goals

We developed some general design goals for ViSTa in ad-
dition to addressing the specific deficiencies of the various

�
Texture mapping is a process by which a 2D image is painted onto the

faces of a 3D model. It is typically accomplished on modern workstation
graphics hardware by associating a pair of normalized texture coordinates��������	�
� ���������

with each vertex. These texture coordinates proportionally
indicate the position of the corresponding vertex in the 2D texture image,
and interpolating between them gives the texture coordinates for all points
on each face.

existing formats called out above:

� data accuracy, especially with respect to the abilities to dis-
play and pick accurate locations on the terrain and to accu-
rately display overlaid representations of auxiliary science
data

� minimization of file size
� platform portability
� run-time efficiency in computation and memory usage for
systems which create, process, and display ViSTa format ter-
rains

� support of both high-resolution/resource-intensive and
lower-resolution/less-resource-intensive (e.g. public out-
reach) applications

� support of both single-wedge (i.e. all vertices visible from
the left image of a single stereo pair) and merged multi-wedge
terrains

� ease of generation from stereo vision data
� ease of integration with MER subsystems which read and
write terrain data

ViSTa Format Basics

ViSTa is a binary format composed of fixed-length fields in a
well-defined sequence. It is specifically designed for the vi-
sualization of textured terrain surface meshes acquired from
stereo vision hardware. Geometric data is stored using IEEE
754 32-bit floating point numbers as this is commonly re-
quired by modern workstation rendering systems. Because
the basic ViSTa structure is a contiguous array of vertices
combined with a set of indexed triangle strips, it should be
possible on many modern workstations to load the data from
disk in blocks and send it to the rendering system without
any per-vertex or per-face loops in the front-end application
code whatsoever. As we describe below in Section 4, we have
achieved this in our implementation of SAP.

All spatial geometric data in a ViSTa file are specified in
units of meters. All vertices are specified in the same coor-
dinate system. The specification of this coordinate system is
implementation-dependent, but in all cases must be Cartesian
and right-handed. A fixed space is reserved in every ViSTa
file for implementation-dependent specification of coordinate
system (this space may be unused in some implementations,
e.g. if the coordinate system in that implementation is im-
plicit).

To keep the ViSTa format flexible and re-usable, we have
chosen to explicitly leave the syntax and semantics of some
sections of a ViSTa file implementation-dependent. Spe-
cific ViSTa implementations are defined by documents which
specify how each of these sections are to be interpreted. Each
implementation is assigned a 4-byte implementation identi-
fier. A system which creates a ViSTa file must specify the im-
plementation it is using by writing the corresponding imple-
mentation identifier in the header section of the file. Systems
which read ViSTa files must check this field and interpret the
data according to the indicated implementation, or display an
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error message if they do not support the implementation.

So far we have defined three ViSTa implementations: SMP,
FDO, and MER. SMP is a “Simple” implementation that we
employed for early development and testing. FDO is the im-
plementation we employed for the FIDO rover field test de-
scribed below in Section 5. MER is the implementation we
are developing for the MER mission.

Bounding Boxes

A ViSTa file includes a direct representation of the axis-
aligned bounding box that encloses the entire terrain in the
file, as well as per-texture bounding boxes at each LOD.
Bounding boxes are very useful because the can be used by
rendering systems to do high-speed visibility culling for im-
proved rendering performance. The Java 3D[TM] rendering
system that we use in SAP has this feature. We also use
the bounding boxes in our ray intersection implementation
as described below in Section 4. Since the bounding boxes
are fixed it is more efficient to compute and store them once
when the ViSTa file is created, rather than have to generate
them from the terrain data every time the file is loaded.

ViSTa Layout

In this section we give an overview of the layout of a ViSTa
file. However as some details of the ViSTa specification are
still in flux at the time of this writing, we do not provide the
lowest-level details. The ViSTa specification, maintained at
[1], defines the syntax and semantics of every field at the bit
level.

A ViSTa file is an ordered sequence of fixed-length fields
which follows this grammar:

ViSTa := VSTHeader
BoundingBox
TextureRef �
CoordinateSystem
Vertex

�
LOD

�

LOD := LODHeader
BoundingBox �
Patch

�

Patch := PatchHeader
IndexArrayLength

�
IndexArray

�

IndexArray := Index
�

The VSTHeader field contains basic information about the
ViSTa file including the ViSTa format version to which the
file corresponds, the ViSTa implementation to which it ad-
heres, byte order, total number of texture references, total
number of vertices, and total number of LOD.

The BoundingBox field that follows the VSTHeader
specifies the corners of an axis-aligned bounding box which
contains the entire terrain surface defined in the file.

A Vertex field contains the spatial
�����	�
����

coordinates of
a vertex on the terrain surface and the normalized texture co-
ordinates

�����	�	���� ���������
at that vertex as IEEE 754 32-bit

floating point numbers.

The Vertex
�

section is a pool of vertices shared by all
LOD. Vertex fields in this section are implicitly assigned
zero-based integer indices according to their position in the
file.

A TextureRef is an implementation-specific reference to a
texture image. All texture images are stored outside the ViSTa
file. Each TextureRef is implicitly assigned a zero-based
integer index according to its position in the file. ViSTa files
containing data from only a single stereo pair normally con-
tain exactly one TextureRef. In the MER implementation,
this field is a relative path to a file containing a left-camera
acquired image.

The CoordinateSystem field is an implementation-
specific area where data may be stored to locate the terrain
defined in the file relative to other terrains and/or to externally
known coordinate frames. Please refer to the ViSTa specifi-
cation, [1], for details on this field.

Multiple LODs within a single ViSTa file are presented in
increasing order from least-detailed to most-detailed. Each
LOD is implicitly assigned a zero-based integer index accord-
ing to its position in the file.

An LOD is composed of a header, a set of axis-aligned
BoundingBoxes, one per texture, and a set of Patches.

A Patch is a collection of indices into the Vertex pool
that defines the topology of a chunk of the terrain surface
at a given LOD which is textured entirely by the image cor-
responding to one TextureRef. There are two types of
patches: point cloud and triangle strip. A point cloud patch
contains a set of zero-dimensional points and is typically used
only when triangulation is not available or is infeasible. A tri-
angle strip patch contains a set of triangle strips which define
a localized region of the terrain surface. Each patch contains
a header that identifies its type and the index of the Textur-
eRef to which it corresponds.

Visibility

By placing triangles in Patches which each reference a spe-
cific texture, a ViSTa file specifies an association for each
triangle in the terrain to a specific texture image such that

� the texture image is (usually the rectified2 version of) an

�
I.e. corrected for nonlinear optical distortion.
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image acquired by the left camera of the stereo vision hard-
ware, or a processed version thereof

� the triangle is visible in the texture image, where the defi-
nition of visible is that

1. the triangle is not occluded in any part in the texture im-
age by any triangle in the same LOD

2. the geometric back-projection of (front face of) the tri-
angle into the image plane (see [10]) is entirely within the
bounds of the image

In addition to these rules for vertex visibility, SAP imposes
additional constraints on the accuracy of the texture coordi-
nates

� ���	�	
that are associated with every vertex in a ViSTa

file.

Texture coordinates for a vertex are accurate if they define a
point in the texture image plane inside the pixel containing the
geometric back-projection point of the vertex. This definition
can also be viewed as an algorithm to generate texture coor-
dinates for an arbitrary vertex, provided that a texture image
in which the vertex is visible is already known. Additionally,
such texture coordinates are available as a trivial by-product
of the stereo reconstruction algorithm which performs the for-
ward mapping of image pixels to 3D vertices: if such an al-
gorithm maps a pixel

� � ����
of the (rectified) left image to 3D

vertex � , and the (rectified) left image is � pixels wide and�
pixels tall, then the normalized texture coordinates associ-

ated with � are
�����	�	�� � �
	 � ��� 	 � 

.

This definition of texture coordinate accuracy ensures that vi-
sual features in the texture image are properly co-registered
with the geometry of the terrain, which is important in SAP
because the image is typically rich in details that scientists
use to perform visual localization, select points of interest,
and plan activities. As we describe below in Sections 4 and 6,
we can also leverage the texture coordinates’ accuracy to im-
plement picking, overlay graphics, and auxiliary science data
co-registration.

Scalability

ViSTa supports data scalability by allowing the definition,
within a single file, of terrains ranging in size from a frac-
tion of the data from a single stereo pair to a full panorama
of stereo pairs or more. Additionally, SAP supports loading
multiple ViSTa files into the same interactive scene, as shown
in Figure 2.

The geometry in a ViSTa file is specified as an ordered set of
Levels Of Detail (LOD) to support scalable visualization per-
formance and resource usage. Each LOD has a header field
which contains a distance threshold below which SAP will
consider switching to the next higher LOD, if available. The
exact semantics of this field are described below in Section 4.

The header field for each LOD identifies the highest-indexed
vertex referenced by that LOD. This feature aids the imple-
mentation of a simple utility for reducing the available num-

ber of LOD (and hence the total size) of a ViSTa file. Such
a utility will likely be useful for producing smaller datasets
suitable for internet distribution for public outreach.

Limitations

In its current form, the ViSTa format does have certain limi-
tations. It has been designed with only terrain data acquired
from stereo vision hardware in mind. There are actually no
serious restrictions at the bit-level that would make it diffi-
cult to generalize ViSTa to terrain data acquired from many
other sources. Some of the semantic requirements defined in
the ViSTa specification ([1]) only seem applicable to vision-
acquired terrains and would likely have to be relaxed for ter-
rains acquired through other means.

As it is essentially a surface mesh format, ViSTa is appro-
priate for visualization purposes. It may not be as directly
useful for geometric interrogation and analysis applications,
where occupancy-grid based representations are sometimes
preferred.

4. IMPLEMENTATION DETAILS

We now turn to some of the details of SAP’s implementation,
which illustrate how the design of the ViSTa terrain format
can be leveraged to build a high-performance interactive vi-
sualization system.

The 3D visualization component in SAP was developed rel-
atively quickly, with the attention of only one full-time soft-
ware engineer for about 10 months. Of course, this would
not have been possible without the collaborative support of
the entire SAP development group (which itself has included
only 3 full-time developers).

Like the rest of SAP, the 3D visualization component is de-
veloped entirely in the Java[TM] language on RedHat R

�
Linux

workstations. We use Sun Microsystems’ Java[TM] 1.4 devel-
opment environment, combined with the Sun Java 3D[TM] 1.3.0
(ported to Linux by the Blackdown project) package and the
Sun Java Advanced Imaging (JAI) 1.1.1 package.

Level Of Detail (LOD) Switching

In SAP, the geometric LOD and texture resolution for each
terrain wedge in the scene are possibly modified each time the
viewpoint is moved during interactive navigation. In our cur-
rent implementation these computations are based on the dis-
tance from the viewpoint Center-of-Projection (CoP) to the
centroid of the bounding box of each terrain wedge (recall
that this bounding box is present in the ViSTa file for the
wedge, so computing these centroids is a constant-time op-
eration per wedge).

As shown in Figure 4, the ViSTa format wedges each define
a set of discrete geometric LOD. Each LOD in the ViSTa file
has a header which includes a field called the “LOD switch
threshold”. This is the distance from viewpoint CoP to the
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Figure 4. SAP loads 3D terrain data from per-wedge ViSTa files which each contain a set of discrete Levels Of Detail (LOD).
Shown here are the 6 LODs in a ViSTa file for one wedge, which range in size from about 100 triangles to about 100,000
triangles. Data shown is from recent field test of the MER-like FIDO rover [5].

wedge centroid below which a more detailed LOD should be
displayed. These threshold values are currently computed by
the following heuristic algorithm (contributed by Jack Morri-
son):

For each LOD
�
:

1. Compute ��� , an estimate of the average “width” of a tri-
angle in LOD

�
, according to the following formula

� � �
�
average terrain bounding box side


�

number of triangles in LOD
� (1)

2. Compute
� � , the LOD switch threshold for LOD

�
, accord-

ing to the following formula, which makes
� � the distance at

which a triangle of “width” ��� subtends a viewing angle of���
: � � �

���	� �
����� ��� � � (2)

Or, use the approximation:

� ��� ��� �
� (3)

SAP loads texture image data separately from the terrain ge-
ometry. Each wedge is textured by (a possibly processed ver-
sion of) the left image of the stereo pair from which it was
generated. The resolutions of the images actually sent to the
rendering system are generally not the same as the original
resolutions of the images; modern rendering systems require
texture dimensions to be powers of 2. SAP further downsam-
ples the images by an additional power of 2 in each dimen-
sion to produce a smaller image that still looks good, which
works because the farther away the viewpoint is from a wedge
the smaller the wedge appears. SAP currently uses a simple
heuristic to select the appropriate resolution for the texture on
each wedge: First, a bounding sphere is fit to the wedge ge-
ometry (this can be done in constant time by operating only
on the wedge bounding box). Next, the bounding sphere is
conceptually projected from its location in the scene onto the
current viewpoint canvas, resulting in a circle. The radius of
the circle is then measured in pixels, and the largest available
texture resolution whose maximum dimension is less than or
equal to the measured radius is selected.

SAP aggressively attempts to use the least-detailed LOD and
smallest texture resolution possible for all wedges according
to the current viewpoint location. Furthermore, as we de-
scribe next, LOD levels and textures that are not currently in
use may be culled from memory as necessary.

Multi-Level Caching

SAP employs object caching in several places to enable high-
speed loading of previously viewed data and to provide a cen-
tral location for referencing large data objects to avoid mak-
ing copies. We have developed a generic Java[TM] object cache
which works with the Java Garbage Collector (GC) to en-
sure that unreferenced objects are only flushed from the cache
when memory is actually running low. As Figure 5 illustrates,
we employ several instances of this object cache in our terrain
system.

2x2 texture

1x1 texture

256x256 texture

TerrainTexture object

TerrainTexture object

TerrainTexture object

LOD 0

LOD 1

TerrainGeometry object

TerrainGeometry object

Image file (texture)

TG TGTG

S

Geometry Appearance

��������

= GC−aware object cache

ViSTa file (geometry)

(memory mapped)
Vertex Array

L
O

D
 and resolution selection logic

Java3D Scene Graph
Cached by OS memory paging system

Figure 5. We have developed a generic Java[TM] object cache
which works with the Java Garbage Collector (GC) to en-
sure that unreferenced objects are only flushed from the cache
when memory is actually running low. This figure shows the
uses of instances of this object cache in our terrain system.
An additional level of caching is achieved by memory map-
ping the vertex array in the ViSTa file.

As the figure shows, we cache the topology data for each
LOD separately, a feature easily implemented using the dis-
crete LODs available in the ViSTa file. We also implement
an additional level of caching by memory-mapping the ver-
tex array from the ViSTa file. This not only speeds loading
by avoiding copies of this voluminous data structure, but it
also transparently provides demand loading and caching of
the data by taking advantage of the OS memory paging sys-
tem. This works because the ViSTa specification encourages
ViSTa file writers to order the vertex array so that vertices
used in an LOD appear contiguously, so that those vertices
that are used by higher (more detailed) LOD appear later in
the array, and so that more detailed LOD share the vertices
used by less-detailed LOD. Together, these ensure locality of
reference for the vertex data, which makes page-caching use-
ful.
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Asynchronous Data Loading

In our implementation of SAP we take advantage of Java[TM]’s
threading system to load multiple parts of a data collection
concurrently, while still allowing the user to interact with the
scene. For very large datasets, e.g. the one described below
in Section 5, this has the great advantage that the user does
not have to wait for the entire dataset to load before starting
to investigate it.

We implement asynchronous data loading by submitting tasks
to instances of a generic thread pool. The thread pool is
implemented as a constant number of worker threads and a
queue to which tasks are submitted for execution. Tasks are
pulled from the queue and assigned to worker threads as the
threads become available. When loading 3D datasets we sub-
mit each LOD fetch and each texture fetch as a separate task
to a geometry loading thread pool and to a texture loading
thread pool, respectively.

Ray Intersection

Ray intersection is another feature in SAP which is simpli-
fied and enhanced by ViSTa features. This is the problem
of taking an arbitrary spatial ray in the 3D scene and find-
ing the ordered set of points that it intersects on the (out-
ward facing) terrain surface. Ray intersection is currently
used in SAP to implement interactive picking of points on
the terrain and to produce accurate simulations of planned re-
mote sensing operations. For example, if a scientist wants
to aim a mast-mounted line-of-sight remote spectrometer in-
strument on a specific rock, we simulate the activity by com-
puting rays around the perimeter of the spectrometer’s (typi-
cally very narrow) view frustum. We use our ray intersection
system to find the nearest points where the rays intersect the
previously sensed terrain (normally the area of interest, if it
is on the terrain at all, has been previously imaged). Once
we have the intersection points we can project them back to
screen space and connect them to form a polygon which rep-
resents the spot on the terrain that the spectrometer will likely
measure. We call this simulation feature a “footprint,” and it
provides valuable feedback to the scientists about the proba-
ble effects of their planned activities. As we mention below
in Section 6, we have not finished implementing the footprint
feature in our 3D views, but it has been completed in the 2D
views (which still rely on ray intersection against the terrain
models behind-the-scenes).

Before we describe SAP’s ray intersection algorithm we need
to describe how SAP implements interactive picking in 2D
views, as the same functionality is leveraged by a part of the
ray intersection algorithm. When the user clicks on a point in
an image in a 2D view, we display the image pixel coordinates
of the clicked point and also the spatial

� � ��� � � 
coordinates

of the point that were recovered from stereo correlation, if
any. To produce this latter display, SAP performs a lookup in
a pre-computed range map, which is normally an amortized
constant-time accessible cache of all the stereo correlation re-

sults for the wedge corresponding to the image.

We now present the ray intersection algorithm. Given a ray� � ���������
	���������� 	������ � ���  and a set � of terrains:

1. for each terrain wedge � � � :
(a) if

�
intersects the bounding box for � specified in its

ViSTa file then:
i. Request the topology information for the lowest (i.e.

least-detailed) LOD of � from the centralized cache de-
scribed in the previous section.

ii. Using the lowest-LOD topology information and the
memory-mapped pool of vertices from the ViSTa file for � ,
iterate over all the triangles in the lowest LOD of � , checking
the intersection of

�
with each. Add any front-face intersec-

tions found to the result list. Compute both the spatial and
normalized texture coordinates for each intersection point by
interpolating the vertex data for the intersected triangle.
2. Compute the texture image pixel coordinates for each in-
tersection point by scaling the normalized texture coordinates
to the dimensions of the corresponding texture image.
3. Sort the result list in increasing order by distance from��������	��

.

The result of this algorithm is an ordered list containing in-
formation about each intersection point. At this stage the
normalized texture coordinates and the texture image pixel
coordinates have already been computed. Spatial intersection
coordinates are also available, but they are computed only
against lowest-resolution LOD of the terrain surface. Some-
times more accurate spatial coordinates are not required, but
if necessary, we can find high-resolution spatial coordinates
quickly by performing a range map lookup using the texture
image pixel coordinates in the same way as we do for a pick
in a 2D view. If this lookup fails (i.e. because stereo cor-
relation failed for the pixel in question) then this is a strong
suggestion to SAP that the spatial coordinates of the point are
uncertain and should not be trusted.

The ray intersection algorithm leverages ViSTa features in
several ways. First, it uses the terrain bounding box to per-
form a quick intersection check. Second, it only iterates over
the lowest LOD of a terrain, which can have 3 or more orders
of magnitude fewer triangles than the highest LOD (c.f. Fig-
ure 4). Third, it uses the guaranteed semantics and accuracy
of the texture coordinates to compute the texture image pixel
coordinates at the intersection point, which SAP can use di-
rectly in some cases, and from which SAP can quickly look
up a high-resolution spatial intersection point when neces-
sary.

5. TEST RESULTS

SAP was recently tested aggressively in an intense 10-day
field test of the MER-like FIDO rover ([5]), in which the
rover was remotely operated in a Southwest desert location.
Most of the data shown in previous figures was actually ac-
quired, analyzed, and used for science operations planning
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during this test. The operations center for this test, shown in
Figure 6 was staged at JPL.

The 3D visualization capabilities of SAP were used exten-
sively in this field test, which included some relatively large
datasets. The largest single 3D dataset acquired during the
test was a panorama taken from the initial rover location. This
dataset consists of 265 terrain wedges, each with an asso-
ciated 640x480x24 texture image. Aggregately, the highest
LOD and texture resolution of the wedges in this set con-
tained over 14 million triangles (17 million vertices) and over
232MB of texture data. Running under RedHat R

�
Linux 7.2

on PC workstations with dual Intel R
�

Xeon[TM] 1.7GHz proces-
sors, 1GB memory, NVIDIA R

�
Quadro[TM] 4 750 XGL graph-

ics systems, and high-speed IDE disks, SAP reliably loaded
this dataset and allowed interactive navigation at about 20
frames per second, even under high machine load. Load times
(when data is not already in the OS disk cache) are about 20s
until first interactive geometry is available, about 35s until
all geometry is loaded, and about 53s until all textures are
loaded.

6. FUTURE WORK

Even though SAP was comprehensively tested in the recent
FIDO field test, it is not yet complete. Time- and budget-
permitting, we intend to consider several substantial improve-
ments to the 3D visualization component.

One improvement we may add is the ability to display sim-
ulated camera activity footprints on the 3D terrain surface.
A footprint in this usage is the outline of the intersection of
a simulated camera view frustum with the terrain surface,
which gives scientists a sense of the image that will result
from a planned camera activity. We already generate foot-
prints in the SAP 2D views, as shown in the upper right half
of Figure 1.

Another addition we are planning is the ability to overlay aux-
iliary 2D datasets onto the textures in a 3D view. This could
allow the scientists to see a representation of spectral mea-
surement data directly on the terrain feature from which the
data was acquired. This feature is described in detail in [11].

We predict that the well-defined semantics of texture coor-
dinates in ViSTa will aid us in implementing each of these
features.

7. CONCLUSIONS

We have described the design and implementation of the 3D
visualization system in SAP, the primary science data analysis
and science activity planning tool for the Mars Exploration
Rover mission, currently under development.

A major challenge that we faced in the development of SAP
was the definition of the format that it would use to represent
3D terrain data. After analyzing many of the popular formats

currently in use, we decided that a new format was needed to
suit our requirements. To this end we developed the Visible
Scalable Terrain format, or ViSTa. ViSTa is a full 3D format
(i.e. not just a 2.5D elevation map). ViSTa includes bounding
boxes, texture coordinates with well-specified semantics to
allow the accurate overlay of 2D data onto the 3D terrain sur-
face, and it also includes Levels of Detail to enable scalable
performance and resource usage.

The design of the ViSTa format has enabled us to build some
advanced features into SAP, including LOD switching, multi-
level caching, asynchronous data loading, and optimized ray
intersection. Aggregately these features give SAP the capac-
ity it needs to load and manipulate large datasets on PC-class
workstations, and to this end we gave concrete results for
SAP’s measured performance on a specified machine config-
uration during a recent mission-like field test.
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